Decentralized Thoughts is a group blog on decentralization, by decentralized thinkers, for decentralized thoughts, of decentralized matters. Decentralized Thoughts is a group blog on decentralization, by decentralized thinkers, for decentralized thoughts, of decentralized matters.

Private Set Intersection #2

In the first post on Private Set Intersection, I presented the problem of Private Set Intersection, its applications and the simple protocol of [KMRS14], that allows Alice and Bob to learn the intersection of their sets with the aid of an untrusted third party Steve who is assumed to not collude with Alice or with Bob. [Read More]

Polynomial Secret Sharing and the Lagrange Basis

In this post, we highlight an amazing result: Shamir’s secret sharing scheme. This is one of the most powerful uses of polynomials over a finite field in distributed computing. Intuitively, this scheme allows a $Dealer$ to commit to a secret $s$ by splitting it into shares distributed to $n$ parties. The secret is hidden and requires a threshold of $f+1$ parties in order to be reconstructed, where $f < n$.... [Read More]

The Marvels of Polynomials over a Field

In this series of posts, we explore the mathematical foundations of polynomials over a field. These objects are at the heart of several results in computer science: secret sharing, Multi Party Computation, Complexity, and Zero Knowledge protocols. [Read More]

The First Blockchain or How to Time-Stamp a Digital Document

This post is about the work of Stuart Haber and W. Scott Stornetta from 1991 on How to Time-Stamp a Digital Document and their followup paper Improving the Efficiency and Reliability of Digital Time-Stamping. In many ways, this work introduced the idea of a chain of hashes to create a total order of commitments to a dynamically growing set of documents. It’s no wonder these two papers are cited by... [Read More]

On the Optimality of Optimistic Responsiveness

Synchronous consensus protocols tolerating Byzantine failures depend on the maximum network delay $\Delta$ for their safety and progress. The delay, $\Delta$ is usually much larger than actual network delay $\delta$ since $\Delta$ is a pessimistic value. While synchronous protocols tolerating more than one-third will have executions with at least a $\Delta$ latency, recent synchronous protocols such as Sync HotStuff have been trying to reduce the reliance on $\Delta$ as much... [Read More]

Blockchain Selfish Mining

Proof of Work (PoW) Blockchains implement a form of State Machine Replication (SMR). Unlike classical SMR protocols, they are open, i.e., anyone can join the system, and the system incentivizes participants, called miners, to follow the protocol. Therefore, unlike classical SMR protocols, reasoning about blockchain security relies not only on bounding the number of malicious participants. One should crucially ask whether miners are indeed incentivized to follow the prescribed protocol.... [Read More]

Consensus Lower Bounds via Uncommitted Configurations

In this series of three posts, we discuss two of the most important consensus lower bounds: Lamport, Fischer [1982]: any protocol solving consensus in the synchronous model that is resilient to $t$ crash failures must have an execution with at least $t+1$ rounds. Fischer, Lynch, and Patterson [1983, 1985]: any protocol solving consensus in the asynchronous model that is resilient to even one crash failure must have an infinite execution.... [Read More]

Security proof for Nakamoto Consensus

Bitcoin’s underlying consensus protocol, now known as Nakamoto consensus, is an extremely simple and elegant solution to the Byzantine consensus problem. One may expect this simple protocol to come with a simple security proof. But that turns out not to be the case. The Bitcoin white paper did not provide a proof. Several academic papers (e.g. Garay, Kiayias, Leonardos, and Pass, Seeman, shelat and Kiffer, Rajaraman, shelat) later presented rigorous... [Read More]